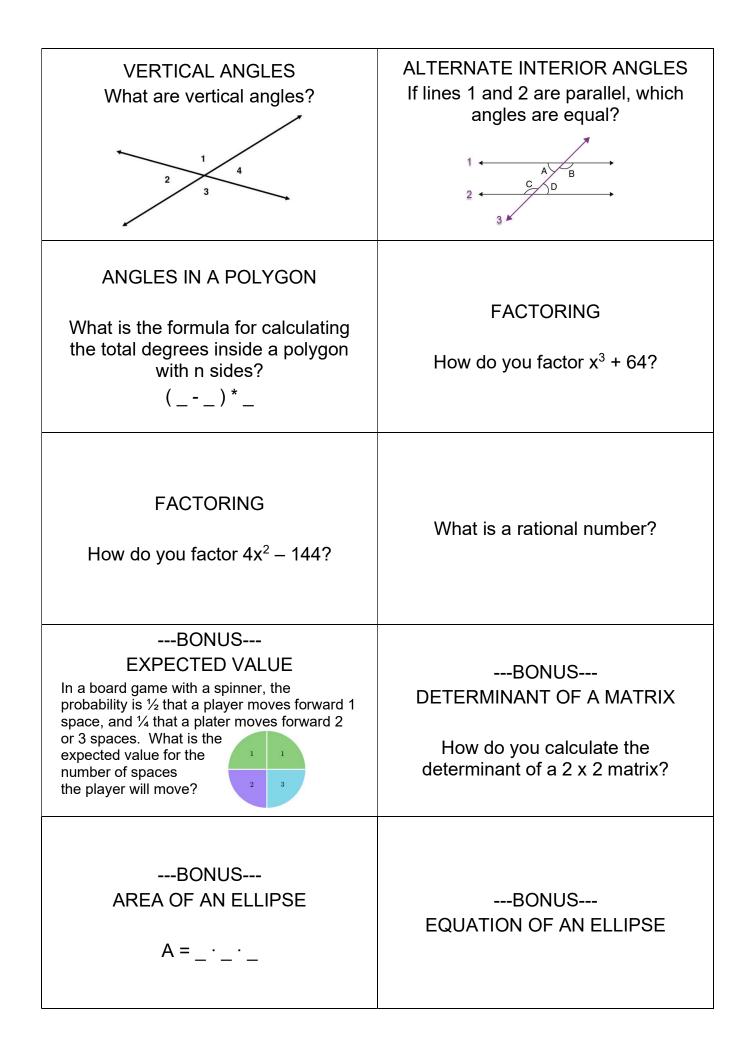
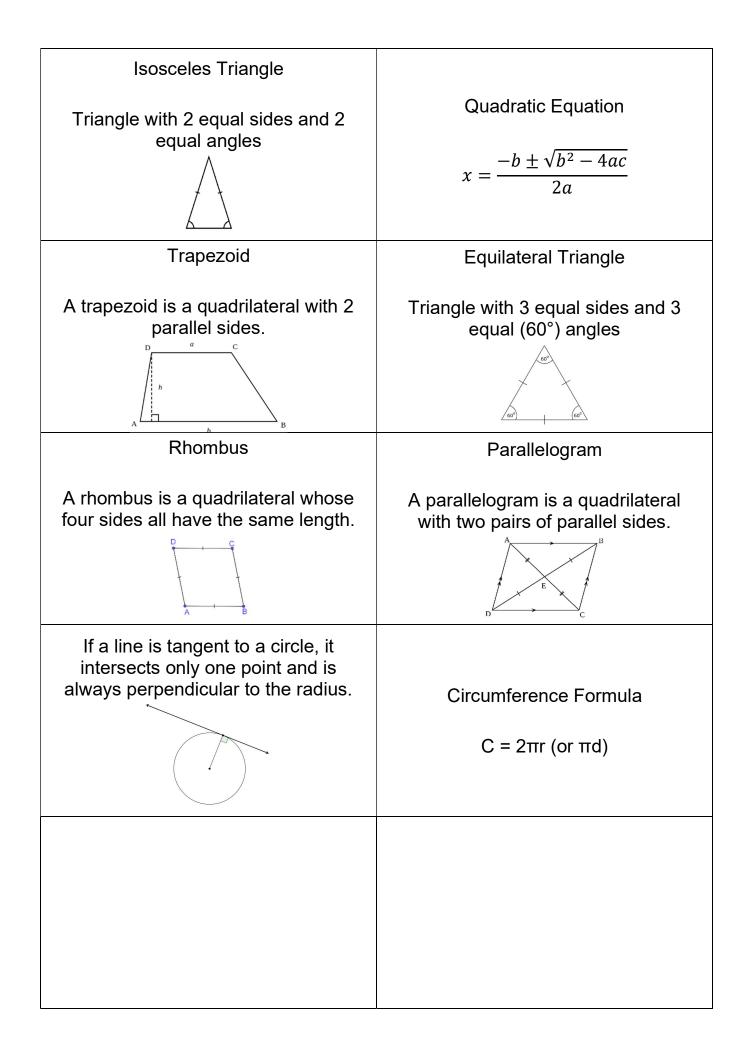


BONUS	BONUS
VERTICAL ASYMPTOTE	HOLES
Find the vertical asymptote(s):	Find the hole(s) in this function:
$f(x) = \frac{1}{x^2 - 5x + 6}$	$f(x) = \frac{x^2 - x - 2}{x - 2}$ x - 2
BONUS	BONUS
HORIZONTAL ASYMPTOTE	OBLIQUE (SLANT) ASYMPTOTE
Find the horizontal asymptote(s):	Find the oblique asymptote(s):
$f(x) = \frac{2x^3 - 2}{3x^3 - 6}$	$f(x) = \frac{-3x^2 + 2}{x - 1}$
BONUS	BONUS
HORIZONTAL ASYMPTOTE	PERMUTATIONS
Find the horizontal asymptote(s): $f(x) = \frac{2x^3 - 2}{3x^5 - 6x^3}$	In a race of 10 people, how many possible gold, silver, and bronze medalist outcomes are there?
BONUS	BONUS
COMBINATIONS	STANDARD DEVIATION
A committee of 5 men and 5 women will be formed from a group of 18 men and 12 women. Express this as a combination.	Calculate the standard deviation of 9, 2, 5, 4, 12, and 7. $\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$
BONUS	BONUS
VERTICAL SHIFT	PHASE SHIFT
What is the vertical shift of this periodic function (and what does it mean)?	What is the phase shift of this periodic function (and what does it mean)?
$f(t) = 4 \cos(2t - \frac{1}{4}\pi) + 3$	$f(t) = 4 \cos(2t - \frac{1}{4}\pi) + 3$

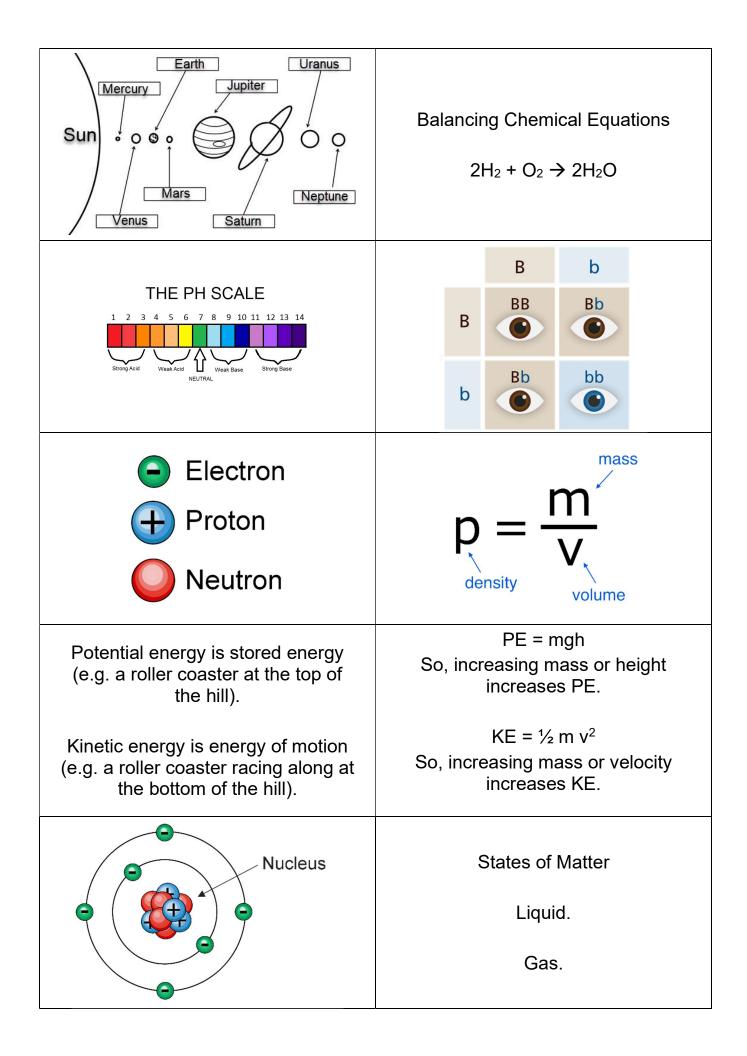

BONUS HOLES	BONUS VERTICAL ASYMPTOTE
$f(x) = \frac{(x-2)(x+1)}{(x-2)}, \text{ so } x \neq 2$ (<i>x</i> -2) (Den ≠ 0) f(2) = 2 + 1 = 3 Hole at (2,3)	$f(x) = \frac{1}{(x - 3)(x - 2)}$ Asymptotes where Denominator = 0 ∴ Vertical Asymptotes @ x=3 & x=2
BONUS OBLIQUE (SLANT) ASYMPTOTE $\begin{array}{r} -3x-3\\ x-1 \end{pmatrix} - 3x^2 + 0x + 2\\ -3x^2 + 3x\\ -3x+2\\ -3x+3\\ -1 \end{array}$	BONUS HORIZONTAL ASYMPTOTE If polynomial degrees are equal top & bottom, coefficients of the highest-degree polynomial $f(x) = \frac{2x^3 - 2}{3x^3 - 6}$ Horizontal Asymptote @ y = 2/3
BONUS PERMUTATIONS (Order matters) $P(n,r) = {}^{n}P_{r} = {}_{n}P_{r} = {}_{n!}{}_{(n-r)!}$ ${}_{10}P_{3} = 10!/(10 - 3)! = 10!/7!$ = 10.9.8 = 720	BONUS HORIZONTAL ASYMPTOTE If the degree of the denominator > that of the numerator, the horizontal asymptote is y=0. $f(x) = \frac{2x^3 - 2}{3x^5 - 6x^3}$ Horizontal Asymptote @ y = 0
BONUS STANDARD DEVIATION Average of 9, 2, 5, 4, 12, and 7 = 6.5 $(9 - 6.5)^2 = 6.25, (2 - 6.5)^2 = 20.25,$ $(5 - 6.5)^2 = 2.25, (4 - 6.5)^2 = 6.25,$ $(12 - 6.5)^2 = 30.25, (7 - 6.5)^2 = 0.25$ Sum of Red Numbers = 65.5 65.5 / (N-1) = 65.5 / 5 = 13.1 $\sqrt{13.1} = 3.62$	BONUS COMBINATIONS (Order does not matter) $C(n,r) = {}^{n}C_{r} = {n \choose r} = \frac{n!}{r!(n-r)!}$ $({}^{18}C_{5}) \cdot ({}^{12}C_{5})$
BONUS PHASE SHIFT (move left or right)	BONUS VERTICAL SHIFT (move up or down)
$f(t) = 4 \cos(2t - \frac{1}{4}\pi) + 3$ (Entire function shifted right $\frac{1}{4}\pi$) + Left, - Right	$f(t) = 4 \cos(2t - \frac{1}{4}\pi) + 3$ (Entire function shifted up 3)

LEAST COMMON MULTIPLE What is a least common multiple?	 PEMDAS Can you solve a problem like the below? - 9 - 2 - 3 - (5 - 4) + (18 ÷ 2 - 2)²
 PEMDAS Can you solve a problem like the below? What is 200(1.5)^{0.5t} when t = 4? 	SLOPE How do you find the slope of line given by the equation 2x + 9y = -18?
SLOPE How do you find the slope of a line that passes through two points? Example: (1 , 4) and (3 , 8)	Y INTERCEPT How do you find the y Intercept of a line given by the equation 3x + 2y = 12?
MIDPOINT FORMULA What is the formula used to find the midpoint between two points?	DISTANCE FORMULA What is the formula used to find the distance between two points?
f(g(x)) If you are given two functions, $f(x) = x + 3 \text{ and } g(x) = x^2 + 1,$ how do you find f(g(1))?	<pre>f(x) If you are given the function f(x) = x + 3, how do you find f(x+2)?</pre>

PEMDAS - 9 - 2 - 3 - (5 - 4) + (18 ÷ 2 - 2) ² - 7 - 3 - 1 + (9 - 2) ² - 7 - 3 - 1 + 7 ² -7 - 2 + 49 40	LEAST COMMON MULTIPLE The Least Common Multiple is the smallest positive number that is the multiple of two or more numbers. $\underbrace{\overset{\text{Multiples of 3}}{3 \rightarrow 6 \rightarrow 9 \rightarrow 12 \rightarrow 15 \rightarrow 18 \rightarrow}_{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17 \ 18 \ 19 \ 20}_{\text{Multiples of 5}}$
SLOPE	PEMDAS
2x + 9y = -18 9y = -2x - 18 y = -(2/9)x - 2 $y = mx \pm b$ m = -2/9	200(1.5) ^{(0.5)(4)} 200(1.5) ² 200(2.25) 450
Y INTERCEPT	SLOPE
3x + 2y = 12 2y = -3x + 12 y = -3/2x + 6 $y = mx \pm b$ b = 6	"Rise over run": <u>(y₂ - y₁)</u> (x ₂ - x ₁) <u>(8 - 4)</u> (3 - 1)
DISTANCE FORMULA $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	MIDPOINT FORMULA $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ (x_1, y_1)
$f(x) \rightarrow f(x+2)$ Replace each x with (x+2): x + 3 → (x+2) + 3	$f(g(x))$ $f(x) = x + 3 \text{ and } g(x) = x^{2} + 1$ Work inside to outside: Find g(1) first: g(1) = 1^{2} + 1 = 2 $f(g(1)) = f(2) = 2 + 3 = 5$


<pre> INEQUALITIES Solve for x: -3x + 8 > 14 </pre>	DOMAIN Given the function below, what is the domain of f(x)? $f(x) = \frac{2}{\sqrt{x-3}}$
$\begin{array}{rcl} \bigstar & \qquad & \qquad \qquad$	$\bigstar \text{LOGARITHM RULES}$ $\log(ab) =$ $\log\left(\frac{a}{b}\right) =$ $\log(a^{b}) =$ $\log_{x} 1 =$
LOGARITHM TO EXPONENTIAL Express log ₂ 8 = x as an exponential	IMAGINARY NUMBERS If n is a positive integer, what is: j ⁴ⁿ ? j ^(4n + 1) ?
IMAGINARY NUMBERS What is i ^{10,000} ? i ^{10,001} ? i ^{10,002} ? i ^{10,003} ?	DOUBLE INCREASE If the average price of a car increases 5% each year, and the average price in 2020 was \$40,000, what will the average price be in 2022?
DOUBLE DECREASE If a \$100 dress was marked down 50% in March then marked down an additional 25% in April, what is the price of the dress?	PYTHAGOREAN THEOREM

DOMAIN	INEQUALITIES
$f(x) = \frac{2}{\sqrt{x-3}}$ x > 3 (Denominator must be >0)	-3x + 8 > 14 -3x > 6 x < -2 If you multiply or divide by a negative, flip the sign!
LOGARITHM RULES log(ab) = log(a) + log(b) $log\left(\frac{a}{b}\right) = log(a) - log(b)$ $log(a^b) = b \cdot log(a)$ $log_x 1 = 0$	EXPONENT RULES $x^{a} \cdot x^{b} = x^{a+b}$ $\frac{x^{a}}{x^{b}} = x^{a-b}$ $(x^{a})^{b} = x^{ab}$ $x^{-a} = \frac{1}{x^{a}}$ $x^{0} = 1$
IMAGINARY NUMBERS $i^{4n} = (i^4)^n = 1^n = 1$ $i^{(4n + 1)}?$ $i^{(4n + 1)} = i^{4n} \cdot i^1 = (1 \cdot i) = i$	LOGARITHM TO EXPONENTIAL $log_2 8 = x$ $2^x = 8$
DOUBLE INCREASE (\$40,000 * 1.05) * (1.05) \$42,000 * 1.05 \$44,100	IMAGINARY NUMBERS $i^{10,000} = (i^4)^{2,500} = 1^{2,500} = 1$ $i^{10,001} = (i^{10,000}) \cdot (i^1) = i$ $i^{10,002} = (i^{10,000}) \cdot (i^2) = -1$ $i^{10,003} = (i^{10,000}) \cdot (i^3) = -i$
PYTHAGOREAN THEOREM a b For right triangles, $a^2 + b^2 = c^2$ (For acute triangles, $a^2 + b^2 > c^2$) (For obtuse triangles, $a^2 + b^2 < c^2$)	DOUBLE DECREASE \$100 - (\$100 · 0.50) = \$100 - \$50 = \$50 \$50 - (\$50 · 0.25) = \$50 - \$12.50 = \$37.50



ALTERNATE INTERIOR ANGLES <a <b="<C<br" <d,="" =="">1 \downarrow 2 \downarrow 3	VERTICAL ANGLES Vertical angles: the angles opposite each other when two lines intersect. They are <u>always</u> equal. <1 = <3, <2 = <4
FACTORING $a^3 + b^3 \rightarrow (a + b)(a^2 - ab + b^2)$ So, $x^3 + 64$ would factor into: $(x + 4)(16 - 4x + x^2)$ NOTE: $a^3 - b^3 \rightarrow (a - b)(a^2 + ab + b^2)$	ANGLES IN A POLYGON For a polygon with n sides, the total degrees inside the polygon equal (n - 2) * 180 (Example: 9 sides: (9 - 2)*180° = 1,260°)
A rational number is any number that can be expressed as a fraction with integers in the numerator and denominator. 1/3 is rational П is irrational	FACTORING $a^2 - b^2 \rightarrow (a + b)(a - b)$ So, $4x^2 - 144$ would factor into: (2x + 12)(2x - 12)
$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} A = ad - bc$ Determinant of 2x2 matrix	Expected value is calculated by summing the products of each probability and value: $(\frac{1}{2} * 1) + (\frac{1}{4} * 2) + (\frac{1}{4} * 3) =$ $\frac{1}{2} + \frac{1}{2} + \frac{3}{4} = 1 \frac{3}{4}$
BONUS EQUATION OF AN ELLIPSE $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	BONUS AREA OF AN ELLIPSE $A = \pi ab$

Quadratic Equation	Isosceles Triangle
What is the quadratic equation?	What is an isosceles triangle?
Equilateral Triangle	Trapezoid
What is an equilateral triangle?	What is a trapezoid?
Parallelogram	Rhombus
What is a parallelogram?	What is a rhombus?
Circumference Formula C = _ · _ · _	Tangent (Geometry) What does it mean for a line to be tangent to a circle?

Balancing Chemical Equations Insert the correct coefficients to balance the equation below: $-H_2 + O_2 \rightarrow -H_2O$	Solar System
Dominant / Recessive What is the eye color of each of the below eyes? B b B B B B B B B B B B B B B B B B B B	pH Scale Label acid, base, and neutral THE PH SCALE
Density How do you calculate density?	Subatomic Particles Give the charges for protons, neutrons, and electrons.
Potential / Kinetic Energy What is the formula for gravitational potential energy? What is the formula for kinetic energy?	Potential / Kinetic Energy Describe potential and kinetic energy.
States of Matter If a material's temperature is above its melting point but below its boiling point, what state is it in? Above its boiling point?	Subatomic Particles What two subatomic particles are located withing the nucleus of an atom?

